

Eternal Network Security

Review

Teams Audit

Conducted by: Peak bolt, 0xbepresent, pontifex

July 25th 2024 - August 20th 2024

1

 Contents

1. About Teams Audit Group

2. Disclaimer

3. Introduction

4. About Eternal Network

5. Risk Classification

5.1.E Impact

5.2.x Likelihood

5.3. Action required for severity levels
6. Security Assessment Summary

7. Executive Summary

8. Findings

8.1.e High Findings

[H-01] Lack of withdrawal limits check

[H-02] Ignoring withdrawal limits during accounts merging a
8.2.x Medium Findings

[EM-01] LPs can withdraw immediately even with withdrawal

cooldown

[M-02] New MarketConfigurationData causes existing
orders to fail

[M-03] Bypassing collateral cap check

[M-04] match Orders affected if withdrawals exceed the

global limit

8.3.e Low Findings

[L-01] Missing validation of non-zero value

[L-02] Command execution could fail

2

2

2

2

3

3

3

4

4

5

7

7

7

8

10

10

11

13

14

16

16

18

19

2

1. About Teams Audit Group

Teams Audit Group consists of multiple teams of some of the best smart contract

security researchers in the space. Having a combined reported security

vulnerabilities count of over 1000, the group strives to create the absolute very best

audit journey possible - although 100% security can never be guaranteed, we do

guarantee the best efforts of our experienced researchers for your blockchain

protocol. Check our previous work here or reach out on Twitter @pashovkrum.

2. Disclaimer

A smart contract security review can never verify the complete absence of

vulnerabilities. This is a time, resource and expertise bound effort where we try to

find as many vulnerabilities as possible. We can not guarantee 100% security after

the review or even if the review will find any problems with your smart contracts.

Subsequent security reviews, bug bounty programs and on-chain monitoring are

strongly recommended.

3. Introduction

A time-boxed security review of the eternal-network repository was done by

Teams Audit Group, with a focus on the security aspects of the application's smart

contracts implementation.

4. About Eternal Network

Eternal Network is a trading-optimised modular L2 for perpetuals. The chain layer

is powered by Arbitrum Orbit and is gas-free, with transactions ordered on a FIFO

basis. The protocol layer directly tackles the vertical integration of DeFi

applications by breaking the chain into modular components to support trading,

such as PnL settlements, margin requirements, liquidations.

https://github.com/pashov/audits
https://github.com/pashov/audits
https://github.com/pashov/audits
https://github.com/pashov/audits
https://twitter.com/pashovkrum
https://twitter.com/pashovkrum
https://twitter.com/pashovkrum
https://twitter.com/pashovkrum
https://twitter.com/pashovkrum
https://twitter.com/pashovkrum

3

5. Risk Classification

Severity Impact: High Impact: Medium
Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

5.1. Impact
 High - leads to a significant material loss of assets in the protocol or significantly

harms a group of users.

 Medium - only a small amount of funds can be lost (such as leakage of value) or a

core functionality of the protocol is affected.

 Low - can lead to any kind of unexpected behavior with some of the protocol's

functionalities that's not so critical.

5.2. Likelihood
 High - attack path is possible with reasonable assumptions that mimic on-chain

conditions, and the cost of the attack is relatively low compared to the amount of

funds that can be stolen or lost.

 Medium - only a conditionally incentivized attack vector, but still relatively likely.

 Low - has too many or too unlikely assumptions or requires a significant stake by

the attacker with little or no incentive.

5.3. Action required for severity levels
Critical - Must fix as soon as possible (if already deployed)

High - Must fix (before deployment if not already deployed)

Medium - Should fix

Low - Could fix

4

6. Security Assessment Summary
review commit hash - 5ef6ed67b5478b734485f04ebc6167630812092c fixes review

commit hash - 95671a3dd756d33a8cdce40dd728e388e23d2bce

Scope

The following smart contracts were in scope of the audit:

7. Executive Summary
Over the course of the security review, Peak bolt, 0xbepresent, pontifex engaged

with Eternal Labs to review Eternal Network. In this period of time a total of 9

issues were uncovered.

TransferCollateral

ExecutionModule

AccountCollateral

BackstopLPConfiguration

CollateralConfiguration

CollateralPool

Market

ConfigurationModule

PassivePerpInstrumentModule

ExecutionModule

OrderModule

Configuration

PrbMathHelper

Timer

Events

Errors

DataTypes

https://github.com/Reya-Labs/reya-network/tree/5ef6ed67b5478b734485f04ebc6167630812092c
https://github.com/Reya-Labs/reya-network/tree/5ef6ed67b5478b734485f04ebc6167630812092c
https://github.com/Reya-Labs/reya-network/tree/5ef6ed67b5478b734485f04ebc6167630812092c
https://github.com/Reya-Labs/reya-network/tree/95671a3dd756d33a8cdce40dd728e388e23d2bce
https://github.com/Reya-Labs/reya-network/tree/95671a3dd756d33a8cdce40dd728e388e23d2bce
https://github.com/Reya-Labs/reya-network/tree/95671a3dd756d33a8cdce40dd728e388e23d2bce

5

Protocol Summary

Protocol

Name Eternal Network

Repository https://github.com/Eternal-

Labs/eternalnetwork

Date

April 30th 2024 - May 3rd 2024

Protocol Type

Perpetuals Trading L2

Findings Count

Severity Amount

High 2

Medium 4

Low 3

Total

Findings

9

6

Summary of Findings

ID Title Severity Status

[H-01] Lack of withdrawal limits check High Resolved

[H-02]

Ignoring withdrawal limits during

accounts merging High Resolved

[M-01]

LPs can withdraw immediately even

with withdrawal cooldown Medium Resolved

[M-02]

New MarketConfigurationData causes

existing orders to fail Medium Acknowledged

[M-03] Bypassing collateral cap check Medium Resolved

[M-04]

matchOrders affected if withdrawals

exceed the global limit Medium Resolved

[L-01] Missing validation of non-zero value Low Resolved

[L-02] Command execution could fail Low Acknowledged

[L-03]

Missing maxExposureFactor in

Errors.ExceededMaxExposure Low Resolved

7

8. Findings

8.1. High Findings

[H-01] Lack of withdrawal limits check

Severity
Impact: Medium

Likelihood: High

Description

The provided update fully excludes withdrawal limits checks from the

CollateralConfiguration.checkWithdrawLimits function and puts them into the

AccountCollateral.updateBalance function. So

AccountCollateral.transferFunds and

ExposedModule.updateCollateralShares functions have neither

GlobalCollateralConfiguration.checkWithdrawLimits nor

CollateralConfiguration.checkWithdrawLimits check since they bypass the

updateBalance function.

8

function transferFunds
 (uint128 fromAccountId, uint128 toAccountId) internal {

if (fromAccountId == toAccountId) { return;

}

 Data storage fromAccountCollateral = load(fromAccountId);
 address[] storage collaterals = GlobalCollateralConfiguration.load
 ().collaterals; for (uint256 i = 0; i <
collaterals.length; i++) { address

activeCollateral = collaterals[i]; int256

amount = fromAccountCollateral

.collateralShares[activeCollateral];
 if (amount == 0) { continue;
 }
>> updateShares(fromAccountId, activeCollateral, -amount);

updateShares(toAccountId, activeCollateral, amount);
 }
 }

// Export some internal functions contract

ExposedModule { using CollateralPool for
CollateralPool.Data;
<...> function
updateCollateralShares
 (uint128 cpId, address collateral, int256 sharesDelta) external {
>> CollateralPool.updateCollateralShares(CollateralPool.exists
 (cpId), collateral, sharesDelta);
 }
}

Recommendations

Consider implementing corresponding checks for these branches.

[H-02] Ignoring withdrawal limits during

accounts merging

Severity
Impact: High

Likelihood: Medium

Description
The CollateralPool.merge merges collateral pool child into the collateral

pool parent ignoring withdrawal limits of the child pool.

9

function merge(Data storage parent, Data storage child) internal { <...>
 // transfer funds from the child collateral pool to the parent
 {

 for (uint256 i = 0; i < collaterals.length; i++) {

address collateral = collaterals[i]; int256 amount =
child.collateralShares[collateral].toInt();

 if (amount == 0) { continue;
 }

 CollateralConfiguration.exists(parentId, collateral);
>> _updateCollateralShares(child, collateral, -amount);

_updateCollateralShares(parent, collateral, amount);
 }
 }

Funds can be withdrawn directly after merge since child pool withdrawal limits

are not transferred to the parent pool.

Recommendations
Consider transferring all withdrawal limits from the child pool to the parent

pool.

8.2. Medium Findings

[M-01] LPs can withdraw immediately even

with withdrawal cooldown

Severity
Impact: Medium

Likelihood: Medium

Description
The withdrawal cooldown period for Backstop LPs is now configured using

backstopLPConfig.withdrawCooldownDurationInSeconds , such that the

withdrawal cooldown period is turned on when it is greater than 0 and turned

off when it is equal 0.

10

However, the issue is that Backstop LPs can start the withdrawal timer before

the withdrawal cooldown is turned on, allowing them to withdraw immediately

even after the withdrawal cooldown is enabled.

1. Suppose the cooldown period for withdrawal has been disabled for a while,

so withdrawCooldownDurationInSeconds == 0 .

2. Knowing that the cooldown period will be enabled soon, Backstop LPs

proceed to start the withdrawal timer using announceBackstopLpWithdraw()

.

3. Protocol now enables withdrawal cooldown to X seconds.

4. However, those Backstop LPs who had announced withdrawal earlier will

be able to withdraw immediately as the withdrawal period is active.

11

function announceBackstopLpWithdraw(Account.Data storage account) internal {
 CollateralPool.Data storage collateralPool = AccountCollateral.getPool
 (account.id); uint128 backstopLpAccountId =

backstopLPConfig.accountId;

 if (backstopLpAccountId != account.id) {

revert Errors.AccountIsNotBackstopLp(
account.id, backstopLpAccountId,

block.timestamp
);
 }
 Timer.Data storage backstopLpWithdrawTimer = Timer.loadOrCreate(

backstopLpTimerId(backstopLpAccountId)
); if (block.timestamp <
backstopLpWithdrawTimer.startTimestamp) { revert

Errors.BackstopLpCooldownPeriodAlreadyActive(

backstopLpAccountId,
 backstopLpWithdrawTimer.startTimestamp,

block.timestamp
);
}
 if (backstopLpWithdrawTimer.isActive()) {
revert
Errors.BackstopLpWithdrawPeriodAlreadyActive(

backstopLpAccountId, block.timestamp
);
}

backstopLpWithdrawTimer.schedule(

block.timestamp +
 backstopLPConfig.withdrawCooldownDurationInSeconds,

backstopLPConfig.withdrawDurationInSeconds
);
 }

Recommendations
Prevent Backstop LPs from starting withdrawal timer using

announceBackstopLpWithdraw() by reverting when

backstopLPConfig.withdrawCooldownDurationInSeconds ==0 .

12

[M-02] New MarketConfigurationData

causes existing orders to fail

Severity
Impact: Medium

Likelihood: Medium

Description
There are three new storage variables (depthFactor , maxExposureFactor ,

maxPSlippage) in MarketConfigurationData that are used to perform slippage

and exposure checks in Market.getPSlippage() .

The issue that that these new storage variables will be initialized to zero for the

existing Market as they were previously un-used before this upgrade.

When maxExposureFactor == 0 , it will cause getPSlippage() to incorrectly

revert even when net exposure is valid.

13

function getPSlippage(
Data storage self,

SD59x18 deltaBase,
 UD60x18 oraclePrice
)
 internal view
returns (SD59x18 pSlippage) {
 MarketConfigurationData memory marketConfig = getConfig(self);

 uint256 riskMatrixIndex = marketConfig.riskMatrixIndex;
 UD60x18 depthFactor = marketConfig.depthFactor;
 UD60x18 maxExposureFactor = marketConfig.maxExposureFactor;
 UD60x18 maxPSlippage = marketConfig.maxPSlippage;

 (
 UD60x18maxExposureShort,

UD60x18maxExposureLong,
 SD59x18[]memoryexposures
) = getPoolMaxExposures(self
 SD59x18 deltaExposure = convertBaseToExposure(deltaBase, oraclePrice);

 SD59x18 netExposure = exposures[riskMatrixIndex].add(deltaExposure);
 UD60x18 maxExposure = netExposure.lt
 (ZERO_sd) ? maxExposureShort : maxExposureLong;

 //@audit when maxExposureFactor == 0, this will revert for valid net
 // exposure too if
(netExposure.abs().intoUD60x18().gte(maxExposure.mul
 (maxExposureFactor))) { revert
Errors.ExceededMaxExposure(netExposure, maxExposure);
 }

 pSlippage = computePSlippage(
{netExposure:netExposure,

maxExposure:maxExposure,

depthFactor:depthFactor}
);

 if (pSlippage.abs().intoUD60x18().gt(maxPSlippage)) {
 revert Errors.ExceededPSlippage(pSlippage, maxPSlippage);
}
 }

Recommendations
Ensure that the new storage variables are initialized to default values when

performing the contract upgrade. Otherwise, handle the uninitialized value in

getPSlippage() .

[M-03] Bypassing collateral cap check

14

Severity
Impact: High Likelihood:

Low

Recommendations
Consider checking the collateral cap in the merge function.

[M-04] matchOrders affected if withdrawals

exceed the global limit

Severity
Impact: High Likelihood:

Low

Description
Within the AccountCollateral::updateBalance function, a validation was added to

check that withdrawals do not exceed a global percentage for each X period of

time (code line 120):

File: AccountCollateral.sol
107: function updateBalance
 (Account.Data storage account, address collateral, int256 assets) internal { 108:
// Convert assets to shares
109: int256 shares = GlobalCollateralConfiguration.convertToShares
 (collateral, assets); 110:
111: // check withdrawal limits, globally and per collateral pool
112: if (assets < 0) { 113: uint256

withdrawnAssets = (-assets).toUint(); 114:
115: if (hasPool(account.id)) {
116: uint128 collateralPoolId = getPool(account.id).id;
117: CollateralConfiguration.exists
 (collateralPoolId,

collateral).checkWithdrawLimits(withdrawnAssets); 118: }
119:
120: GlobalCollateralConfiguration.checkWithdrawLimits
 (collateral,

withdrawnAssets); 121:

} 122:
123: updateShares(account.id, collateral, shares);

124: }

The issue arises when a fee amount is deducted from the account in

MatchOrderModule::executeMatchOrder , specifically in line 85:

15

File: MatchOrderModule.sol
034: function executeMatchOrder(
035: address caller,
036: uint128 marketId,
037: uint128 accountId,
038: uint128 exchangeId,
039: uint128[] memory counterpartyAccountIds,
040: bytes memory orderInputs
041:)
042: external
043: override
044: returns (bytes memory output)

045: {
080: MatchOrderFees memory matchOrderFees;
081: (output, matchOrderFees) = market.executeMatchOrder
 ({ matchOrderInputs: matchOrderInputs });
082: validateMatchOrderFees(matchOrderFees, creditExchangeFees); 083:
084: // deduct fees from the main account and track the total amounts of

// fees for protocol and exchange
085: AccountCollateral.updateBalance(account, market.quoteCollateral, -
(matchOrderFees.takerFeeDebit).toInt()); ...
...
117: }

The issue is that the transaction can be reverted in edge cases where the global

limit is reached due to other withdrawals affecting the execution of match

orders and also affecting the execution of commands coming from the new

function added in periphery/src/modules/ExecutionModule::execute since they

would have to generate a signature again if the deadline is not sufficient until

checkWithdrawLimits allows withdrawals again.

Recommendations
It is recommended that if subtraction from the account for fees occurs, then

transactions should not be reversed. Otherwise, the execution of match orders

will be affected in very specific cases.

8.3. Low Findings

[L-01] Missing validation of non-zero value

Within ConfigurationModule::setMarketConfiguration , there is no

validation that MarketConfigurationData.maxSlippage is not zero:

16

File: ConfigurationModule.sol
55: function setMarketConfiguration
 (uint128 marketId, MarketConfigurationData memory config) external override {
56: if (config.oracleNodeId == 0) {
57: revert Errors.InvalidMarketConfiguration
 (marketId, config, "ORCLN");

58: } 59:
60: if (config.baseSpacing.eq(ZERO_ud)) {
61: revert Errors.InvalidMarketConfiguration
 (marketId, config, "BSSP");

62: } 63:
64: NodeOutput.Data memory node =
65: INodeModule(GlobalConfiguration.getOracleManagerAddress
 ()).process(config.oracleNodeId);
66: UD60x18 oraclePrice = UD60x18.wrap(node.price); 67:
68: if (config.priceSpacing.eq(ZERO_ud) || oraclePrice.lte
 (config.priceSpacing.mul(ud(1000e18)))) {
69: revert Errors.InvalidMarketConfiguration
 (marketId, config, "PRCSP");

70: } 71:
72: if (!config.minimumOrderBase.mod(config.baseSpacing).eq(ZERO_ud)) {
73: revert Errors.InvalidMarketConfiguration
 (marketId, config, "MNOB");

74: } 75:
76: // TODO: it should be less or equal than 0.01 but it breaks a lot of

// testing doing so
77: if (config.velocityMultiplier.gt(ud(1e18))) {
78: revert Errors.InvalidMarketConfiguration
 (marketId, config, "VLCTM");

79: } 80:
81: if (config.depthFactor.eq(ZERO_ud)) {
82: revert Errors.InvalidMarketConfiguration
 (marketId, config, "DPTHF");

83: } 84:
85: if (config.maxExposureFactor.gt(ONE_ud)) {
86: revert Errors.InvalidMarketConfiguration
 (marketId, config, "MXEXF");

87: } 88:
89: Market.Data storage market = Market.exists(marketId);
90: market.onlyAuthorized(Permissions.PASSIVE_PERP_MARKET_CONFIGURATOR); 91:
92: MarketConfiguration.set(marketId, config); 93:

}

17

[L-02] Command execution could fail
The CommandType enum was modified with the removal of the

PropagateCashflow element, which was previously assigned to the value 4 .

The change will

cause the value of TransferBetweenMarginAccounts to be changed from 5 to 4 .

18

That could cause issues for commands constructed right before the contract

upgrade and then executed after the upgrade. If those commands contain

TransferBetweenMarginAccounts , it would be constructed based on the old

value 5 before the upgrade. When they are executed after the upgrade, these

commands will fail as they do not match the contract implementation.

enum CommandType {
 Deposit, // (core command) deposit collaterals
 Withdraw, // (core command) withdraw collaterals
 DutchLiquidation, // (core command) dutch liquidation of an account
 MatchOrder, // (market command) propagation of matched orders
 //@audit PropagateCashflow is removed from enum, causing
 // TransferBetweenMarginAccounts to change from 5 to 4
 //PropagateCashflow, // (market command) propagation of realized PnL
 TransferBetweenMarginAccounts //
 } //(core command) transfer between two margin accounts

[L-03] Missing maxExposureFactor in

Errors.ExceededMaxExposure

A maxExposureFactor was added to adjust the max exposure during the slippage

check. However, the maxExposureFactor value is not present in the custom error

Errors.ExceededMaxExposure , which will not emit the correct parameters when the

transaction reverts.

To resolve this, add maxExposureFactor to Errors.ExceededMaxExposure .

function getPSlippage(
Data storage self,

SD59x18 deltaBase,
 UD60x18 oraclePrice
)
 internal view
returns (SD59x18 pSlippage)
 { ... if

(netExposure.abs().intoUD60x18().gte(maxExposure.mul
 (maxExposureFactor))) {
 //@audit error does not contain the maxExposureFactor

value revert Errors.ExceededMaxExposure(netExposure,

maxExposure); }
 ...
}

