

Eternal Network Security

Review

Teams Audit
Conducted by: T1MOH, Dan Ogurtsov, ubermensch

July 25th 2024 - August 20th 2024

1

 Contents

1. Aibout Teams Audit Group

2. Disclaimerg

3. Introductionn

4. About Eternal Network

5. Risk Classification

5.1. Impact

5.2. Likelihood

5.3. Action

6. Security Assessment Summary

7. Executive Summary

8. Findingsn

9. Critical Findings

[tC-01] Users can't bridge funds back from the app chain

[C - 02] Attacker can drain Periphery by specifying bigsocketPayloadSize

[C-03] Decimals are incorrectly handled in DivReducerNode

 [LH-01] User can lose tokens during deposit fallback

8.3. Medium Findings

[2M-01] Inadequate Verification of token Amount Leads to

 Potential Dust Theft]

[M-02] Stale Price Data in Div Reducer Due to

 Average Timestamp Calculation

[iM-03] Lack of Price Freshness Verification in OraclePrice Datag

[nM-04] Invalid Nodes can be registered due to anincorrect

checka

3

3

3

3

4

4

4

5

6

8

10

10

10

11

12

14

14

15

15

16

17

17

19

19

2

1. About Teams Audit Group
Teams Audit Group consists of multiple teams of some of the best smart contract security

researchers in the space. Having a combined reported security vulnerabilities count of

over 1000, the group strives to create the absolute very best audit journey possible -

although 100% security can never be guaranteed, we do guarantee the best efforts of our

experienced researchers for your blockchain protocol. Check our previous work here or

reach out on Twitter @pashovkrum.

2. Disclaimer
A smart contract security review can never verify the complete absence of vulnerabilities.

This is a time, resource and expertise bound effort where we try to find as many

vulnerabilities as possible. We can not guarantee 100% security after the review or even if

the review will find any problems with your smart contracts. Subsequent security reviews,

bug bounty programs and on-chain monitoring are strongly recommended.

3. Introduction
A time-boxed security review of the Eternal-network repository was done by Teams

Audit Group, with a focus on the security aspects of the application's smart contracts

implementation.

4. About Eternal Network
Eternal Network is a trading-optimised modular L2. The chain layer is powered by

Arbitrum Orbit and is gas-free, with transactions ordered on a FIFO basis. The protocol

layer directly tackles the vertical integration of DeFi applications by breaking the chain

into modular components to support trading, such as PnL settlements, margin

requirements, liquidations.

https://github.com/pashov/audits
https://github.com/pashov/audits
https://github.com/pashov/audits
https://github.com/pashov/audits
https://github.com/pashov/audits
https://twitter.com/pashovkrum
https://twitter.com/pashovkrum
https://twitter.com/pashovkrum
https://twitter.com/pashovkrum
https://twitter.com/pashovkrum
https://twitter.com/pashovkrum
https://twitter.com/pashovkrum

3

5. Risk Classification

Severity Impact: High Impact: Medium

Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

5.1. Impact
 High - leads to a significant material loss of assets in the protocol or significantly

harms a group of users.

 Medium - only a small amount of funds can be lost (such as leakage of value) or a

core functionality of the protocol is affected.

 Low - can lead to any kind of unexpected behavior with some of the protocol's

functionalities that's not so critical.

5.2. Likelihood
 High - attack path is possible with reasonable assumptions that mimic on-chain

conditions, and the cost of the attack is relatively low compared to the amount of

funds that can be stolen or lost.

 Medium - only a conditionally incentivized attack vector, but still relatively likely.

 Low - has too many or too unlikely assumptions or requires a significant stake by

the attacker with little or no incentive.

4

5.3. Action required for severity levels
Critical - Must fix as soon as possible (if already deployed)

High - Must fix (before deployment if not already deployed)

Medium - Should fix

Low - Could fix

6. Security Assessment Summary
review commit hash - 39b31762f0fe5836397c87ba78fd6cd11f147a9f fixes review

commit hash - 29b5286569b08c63b2c94365b04434a5d24a7a03

https://github.com/Reya-Labs/reya-network/tree/39b31762f0fe5836397c87ba78fd6cd11f147a9f
https://github.com/Reya-Labs/reya-network/tree/39b31762f0fe5836397c87ba78fd6cd11f147a9f
https://github.com/Reya-Labs/reya-network/tree/39b31762f0fe5836397c87ba78fd6cd11f147a9f
https://github.com/Reya-Labs/reya-network/tree/39b31762f0fe5836397c87ba78fd6cd11f147a9f
https://github.com/Reya-Labs/reya-network/tree/39b31762f0fe5836397c87ba78fd6cd11f147a9f
https://github.com/Reya-Labs/reya-network/tree/29b5286569b08c63b2c94365b04434a5d24a7a03
https://github.com/Reya-Labs/reya-network/tree/29b5286569b08c63b2c94365b04434a5d24a7a03
https://github.com/Reya-Labs/reya-network/tree/29b5286569b08c63b2c94365b04434a5d24a7a03
https://github.com/Reya-Labs/reya-network/tree/29b5286569b08c63b2c94365b04434a5d24a7a03
https://github.com/Reya-Labs/reya-network/tree/29b5286569b08c63b2c94365b04434a5d24a7a03

5

Scope
The following smart contracts were in scope of the audit

6

7. Executive Summary
Over the course of the security review, T1MOH, Dan Ogurtsov, ubermensch

engaged with Eternal Network to review Eternal Network. In this period of time a

total of 10 issues were uncovered.

Protocol Summary

Protocol

Name
Eternal Network

Repository

https://github.com/EternalLabs/eternalnetwork

Date

March 30th 2024 - April 5th 2024

Protocol

Type

Trading-optimised modular L2

Summary of Findings

Severity Amount

Critical 3

High 1

Medium 4

7

ID Title Severity Status

[C-01]

Users can't bridge funds back from

the app chain Critical Resolved

[C-02]

Attacker can drain Periphery by

specifying big socketPayloadSize Critical Resolved

[C-03]

Decimals are incorrectly handled in

DivReducerNode Critical Resolved

[H-01]

User can lose tokens during deposit

fallback bridging High Resolved

[M-01]

Inadequate Verification of

tokenAmount Leads to Potential Dust

Theft Medium Resolved

[M-02]

Stale Price Data in DivReducer Due to

Average Timestamp Calculation Medium Resolved

[M-03]

Lack of Price Freshness Verification

in Oracle Price Data Medium Resolved

[M-04]

Invalid Nodes can be registered due

to an incorrect check Medium Resolved

[L-01]

Non-Compliance with EIP-712

Specification in Signature Functions Low Acknowledged

[L-02]

Signature Malleability in ecrecover

Precompile Usage Low Acknowledged

8

8. Findings

8.1. Critical Findings

[C-01] Users can't bridge funds back from

the app chain

Severity
Impact: High Likelihood:

High

Description
The protocol must pay a fee in native coin to bridge funds back from the app

chain:
(uint256 tokenFees, uint256 nativeFees) =

getFees(withdrawToken,

socketController, socketConnector,

socketMsgGasLimit, socketPayloadSize
); if (tokenAmount > tokenFees) { uint256
tokensToWithdraw = tokenAmount - tokenFees; @>

socketController.bridge{ value:
nativeFees }({ receiver_: receiver,

amount_: tokensToWithdraw, msgGasLimit_:

socketMsgGasLimit, connector_:
socketConnector, execPayload_: abi.encode(),

options_: abi.encode()
 });

Periphery is the module that interacts with the bridge. The problem is that none

of these contracts has payable f unction to receive ETH

9

contract PeripheryRouter is
 ConfigurationModule,
DepositsModule,
 DepositsFallbackModule,
 OrderModule,
 TransfersModule,
 WithdrawalsModule,
 OwnerUpgradeModule,
 ERC721ReceiverModule,
FeatureFlagModule
{ }
contract PeripheryProxy is UUPSProxyWithOwner, PeripheryRouter {

constructor(address firstImplementation,
address initialOwner)
 UUPSProxyWithOwner(firstImplementation, initialOwner)
 { }
}

Recommendations
Make sure that PeripheryRouter.sol inherits the module with the function
receive() payable

[C-02] Attacker can drain Periphery by

specifying big socketPayloadSize

Severity
Impact: High Likelihood:

High

Description
When a user withdraws funds from protocol, tokens are bridged to another

chain to address receiver . The fee to pay for bridging is based on gasLimit and

payloadSize :

function getFees(...) internal view
returns (uint256 feeInToken, uint256 nativeFees) {
@> nativeFees = controller.getMinFees(connector, gasLimit, payloadSize);

feeInToken = Configuration.getStaticWithdrawFee(token, connector); }

10

User can just set very high payloadSize and protocol will pay high fee:

function executeBridging(...) internal
 {
 ISocketControllerWithPayload socketController =
 ISocketControllerWithPayload(Configuration.getController
 (withdrawToken));
 (uint256 tokenFees, uint256 nativeFees) =

getFees(withdrawToken,

socketController, socketConnector,

socketMsgGasLimit, socketPayloadSize
); if (tokenAmount > tokenFees) {
uint256 tokensToWithdraw = tokenAmount - tokenFees; @>

socketController.bridge{ value:
nativeFees }({ receiver_: receiver,

amount_: tokensToWithdraw, msgGasLimit_:

socketMsgGasLimit, connector_: socketConnector,
execPayload_: abi.encode(), options_:

abi.encode() });
withdrawToken.safeTransfer(OwnableStorage.getOwner(),

tokenFees);
 } else { revert
Errors.NotEnoughFees(tokenAmount, tokenFees); }
 }

 Note that Socket which is used for bridging doesn't send back excessive

msg.value . It treats excessive msg.value as executionFee : Link

Another note is that currently payloadSize is not used in fee calculation, but will

be in a future version link

Recommendations
Remove argument socketPayloadSize and use 0 instead

[C-03] Decimals are incorrectly handled in

DivReducerNode

https://github.com/SocketDotTech/socket-DL/blob/1766c10c0e4dee08db1dc24f0ca8a0b469232a57/contracts/ExecutionManager.sol#L246-L250
https://github.com/SocketDotTech/socket-DL/blob/1766c10c0e4dee08db1dc24f0ca8a0b469232a57/contracts/ExecutionManager.sol#L246-L250
https://github.com/SocketDotTech/socket-DL/blob/1766c10c0e4dee08db1dc24f0ca8a0b469232a57/contracts/ExecutionManager.sol#L246-L250
https://github.com/SocketDotTech/socket-DL/blob/1766c10c0e4dee08db1dc24f0ca8a0b469232a57/contracts/ExecutionManager.sol#L275
https://github.com/SocketDotTech/socket-DL/blob/1766c10c0e4dee08db1dc24f0ca8a0b469232a57/contracts/ExecutionManager.sol#L275
https://github.com/SocketDotTech/socket-DL/blob/1766c10c0e4dee08db1dc24f0ca8a0b469232a57/contracts/ExecutionManager.sol#L275

11

Severity
Impact: High Likelihood:

High

Description
Node DivReducer is supposed to have 2 parents which are Redstone oracles

and combine 2 prices. For example, to price ETH/USDC it will fetch 2 prices

and divide (ETH/USD) / (USDC/USD) .

The problem is that Redstone oracles have 8 decimals by default, but the code

uses 1e18 arithmetic:

function process
 (NodeOutput.Data[] memory parentNodeOutputs) internal pure returns (NodeOutput.D

if (parentNodeOutputs[1].price == 0) { revert InvalidPrice(); }

@> uint256 price = divUintUint
 (parentNodeOutputs[0].price, parentNodeOutputs[1].price).unwrap(); uint256

timestamp =
 (parentNodeOutputs[0].timestamp + parentNodeOutputs[1].timestamp) / 2;

return NodeOutput.Data({ price: price, timestamp: timestamp });

 } function divUintUint(uint256 a, uint256 b) pure returns (UD60x18) {
return UD60x18.wrap(a).div(UD60x18.wrap(b)); }

Here you can see the default decimals is 8: link

Recommendations
Normalize the price from RedstoneOracle by decimals of that oracle. Only

after using it in internal calculations

8.2. High Findings

[H-01] User can lose tokens during deposit

fallback bridging

https://github.com/redstone-finance/redstone-oracles-monorepo/blob/9d10a48aad7a2ccb5f3f48396d970fd63761dbce/packages/on-chain-relayer/contracts/price-feeds/PriceFeedBase.sol#L46-L53
https://github.com/redstone-finance/redstone-oracles-monorepo/blob/9d10a48aad7a2ccb5f3f48396d970fd63761dbce/packages/on-chain-relayer/contracts/price-feeds/PriceFeedBase.sol#L46-L53
https://github.com/redstone-finance/redstone-oracles-monorepo/blob/9d10a48aad7a2ccb5f3f48396d970fd63761dbce/packages/on-chain-relayer/contracts/price-feeds/PriceFeedBase.sol#L46-L53

12

Severity
Impact: High Likelihood:

Medium

Description
DepositsFallbackModule handles situations where a deposit reverts and

initiates bridging back of users' funds. Note that it uses the address receiver of

the deposit on the Eternal chain to bridge back funds on the source chain:

 trycatch DepositsModule({ address(this)).depositPassivePool(inputs) { }

 withdrawTokenBridgingUtils.executeBridging({ : usdc,
 socketConnector: fallbackData.socketConnector,

socketMsgGasLimittokenAmountinputs.owner,: fallbackData.socketMsgGasLimit, :
inputs.amount, @> receiver:

 socketPayloadSize: fallbackData.socketPayloadSize
});
 }

It incorrectly assumes that the address inputs.owner on the source chain is

owned by the same person on Eternal chain. There are 2 cases when the

assumption is not guaranteed:

1. Account Abstraction wallet implementations

2. old version of Safe multisigs https://rekt.news/wintermute-rekt/

Recommendations
Add argument receiver to FallbackData struct and use it instead of

inputs.accountOwner in DepositsFallbackModule.sol

13

8.3. Medium Findings

[M-01] Inadequate Verification of

tokenAmount Leads to Potential Dust Theft

Severity
Impact: Medium

Likelihood: Medium

Description
The Periphery's functionality allows bridging of funds between the source

chain and the protocol, encompassing integration with the deposit, withdrawal,

and transfer functionalities of the Core and Passive Pool. An issue arises when

the deposit action fails on the destination chain; the DepositsFallbackModule is

designed to catch this failure and refund the user on the source chain via the

Socket bridge. The problem occurs when the tokenAmount is lower than the

tokenFees (a static fee), leading to a transaction revert due to insufficient fees,

consequently trapping the tokenAmount in the periphery. This scenario becomes

exploitable due to the absence of verification between the user-

 input tokenAmount and the bridgeAmount in the

BridgingUtils::executeBridging function.

Attackers can exploit this by calling

DepositsFallbackModule::depositPassivePool with a tokenAmount equating

to the Periphery's balance (accumulated from previous users' dust) and a

different bridgeAmount , causing a revert in the

DepositsModule::depositPassivePool that triggers the

BridgingUtils::executeBridging function, thereby bridging the Periphery's

balance back to the attacker in the other chain. This issue allows attackers to

siphon accumulated dust amounts from the Periphery.

14

Recommendations
To mitigate this vulnerability and safeguard against potential dust theft, it is

recommended to:

1. Implement a mechanism to allow users to reclaim their tokens on the

destination chain in case of a bridging failure.

2. Enhance the verification within the BridgingUtils::executeBridging function

to ensure that the tokenAmount matches the bridgeAmount exactly. This

would prevent the discrepancy that allows the attack to occur.

[M-02] Stale Price Data in DivReducer Due to

Average Timestamp Calculation

Severity
Impact: High Likelihood:

Low

Description
The DivReducer function within the system is designed to calculate the quotient

of the prices from two input nodes, typically used for deriving asset prices in

alternative currency terms when direct feeds are not available. A critical part of

this functionality is the calculation of the updated_at timestamp for the output,

which currently averages the timestamps of the two input nodes. This approach

introduces a significant risk; if one input node provides a very recent

timestamp and the other is significantly stale, the averaged timestamp could

misleadingly pass staleness checks, thus presenting the output as more current

than it actually is. This can lead to the use of outdated price data in critical

financial calculations, potentially affecting all dependent systems relying on

the accuracy of this feed for timely decisionmaking.

15

Recommendations
To mitigate the risk of using stale data and enhance the reliability of the

DivReducer node's output, amend the logic for determining the updated_at

timestamp of the DivReducerNode output. Instead of averaging the timestamps of

the input nodes, use the minimum of the two timestamps. This approach

ensures that the output timestamp accurately reflects the freshness of the data,

prioritizing the most conservative estimate of data recency.

[M-03] Lack of Price Freshness Verification

in Oracle Price Data

Severity
Impact: Medium

Likelihood: Medium

Description
The getOraclePrice and getCollateralExchangeInfo functions retrieve

NodeOutput.Data containing price information and a timestamp indicating the

freshness of this price. An issue has been identified wherein these functions use

the price data directly without verifying the freshness of the data based on the

timestamp. This oversight could lead to scenarios where stale or outdated price

data is used in significant financial calculations or decision-making processes.

Recommendations
To address this vulnerability and ensure the reliability of price data used

throughout the system by introducing logic in both getOraclePrice and

getCollateralExchangeInfo functions to check the timestamp of the

NodeOutput.Data against a predefined freshness threshold.

16

[M-04] Invalid Nodes can be registered due to

an incorrect check

Severity
Impact: Medium

Likelihood: Medium

Description
DivReducer node is supposed to have 2 parent nodes. During registration node

is checked to be valid, however it does nothing if parents are invalid:

function _isValidNodeDefinition
 (NodeDefinition.Data memory nodeDefinition) internal view returns (bool valid) {

if (nodeDefinition.nodeType == NodeDefinition.NodeType.DIV_REDUCER) {
 //check if parents are processable
@> _hasValidParentNodeDefinitions(nodeDefinition);
}

 ...
 }
 function _hasValidParentNodeDefinitions (NodeDefinition.Data

memory nodeDefinition) internal view returns
(bool valid) { for (uint256 i = 0; i <

nodeDefinition.parents.length; i++) {
 NodeDefinition.Data memory nodeDef = _getNode
(nodeDefinition.parents[i]); if
(!_isValidNodeDefinition(nodeDef)) {

return false;
 }
} return
true;
 }

Recommendations
function _isValidNodeDefinition

 valid) if (nodeDefinition.nodeType == NodeDefinition.NodeType.DIV_REDUCER) {{

(NodeDefinition.Data memory nodeDefinition) internal view returns (bool

 //check if parents are processable
- _hasValidParentNodeDefinitions(nodeDefinition);
+ if(!_hasValidParentNodeDefinitions(nodeDefinition)) return false;
... }}

17

8.4. Low Findings

[L-01] Non-Compliance with EIP-712

Specification in Signature Functions
The calculateDigest and hashExecuteBySig functions currently do not

adhere to the EIP-712 specification regarding the encoding and hashing of

messages for signature verification. EIP-712 aims to standardize typed data

signing with Ethereum, providing a secure and compliant way to generate

verifiable and understandable messages. According to the specification, the

correct encoding format is "\x19\x01" ‖ domainSeparator ‖

hashStruct(message) , with the domainSeparator being the result of

hashStruct(eip712Domain) , where eip712Domain is a struct containing fields

like name , version , chainId , verifyingContract , and salt . These fields

are essential for ensuring the integrity and domain specificity of signatures,

enhancing security against certain attacks.

The deviation from this standard in the current implementation could

potentially lead to unexpected integration failures with EIP712-compliant

wallets or tooling that perform the encoding in the appropriate way, where

users will be requested to sign random bytes instead of a clear message that

they can verify.

It is recommended to adopt the OpenZeppelin library's EIP712.sol

implementation, which is fully compliant with the EIP-712 standard and

widely recognized for its security and reliability. This change would ensure

consistency with Ethereum's best practices for signing and verifying typed

data, enhancing the protocol's overall security posture with minimal impact on

functionality.

18

[L-02] Signature Malleability in ecrecover

Precompile Usage
The protocol's current use of the ecrecover precompile introduces a security

concern due to signature malleability. Specifically, the vulnerability arises from

the possibility of altering the s and v components of a signature, thereby

generating a different yet valid signature that corresponds to the same hash and

signer. This issue does not presently pose a direct threat to the protocol's

security due to the implementation of nonces within the system's signature

scheme, which mitigates the risk of replay attacks.

However, addressing this form of signature malleability is considered best

practice to fortify the protocol against potential future vulnerabilities or

exploits that may arise from unforeseen interactions or changes within the

system. OpenZeppelin's ECDSA library provides a solution to this issue

ensuring that signatures are both standard and strictly non-malleable.

