

Eternal Restaking Audit Report

Version 2.0

Audited by:

HollaDieWaldfee

bytes032 alexxander

April 1, 2024

Contents

1 Introduction 2

1.1 About Renascence . 2

1.2 Disclaimer . 2

1.3 Risk Classification . 2

2 Executive Summary 3

2.1 About Eternal Restaking . 3

2.2 Overview . 3

2.3 Issues Found . 3

3 Findings Summary 4

4 Findings 5

5 Centralization Risks 14

5.1 Owner is fully trusted . 14

6 Systemic Risks 14

6.1 External tokens risk . 14

1 Introduction

1.1 About Renascence

Renascence Labs was established by a team of experts including HollaDieWaldfee, MiloTruck, alexxander and

bytes032.

Our founders have a distinguished history of achieving top honors in competitive audit contests, enhancing the

security of leading protocols such as Reserve Protocol, Arbitrum, MaiaDAO, Chainlink, Dodo, Lens Protocol,

Wenwin, PartyDAO, Lukso, Perennial Finance, Mute and Taurus.

We strive to deliver tailored solutions by thoroughly understanding each client's unique challenges and

requirements. Our approach goes beyond addressing immediate security concerns; we are dedicated to

fostering the enduring success and growth of our partners.

More of our work can be found here.

1.2 Disclaimer

This report reflects an analysis conducted within a defined scope and time frame, based on provided materials

and documentation. It does not encompass all possible vulnerabilities and should not be considered

exhaustive.

The review and accompanying report are presented on an 'as-is' and 'as-available' basis, without any express or

implied warranties.

Furthermore, this report neither endorses any specific project or team nor assures the complete security of the

project.

1.3 Risk Classification

 Impact: High Impact: Medium Impact: Low

Likelihood: High High High Medium

Likelihood: Medium High Medium Low

https://twitter.com/HollaWaldfee100
https://twitter.com/HollaWaldfee100
https://twitter.com/MiloTruck
https://twitter.com/MiloTruck
https://twitter.com/__alexxander_
https://twitter.com/bytes032
https://twitter.com/bytes032
https://code4rena.com/reports/2023-01-reserve/
https://code4rena.com/reports/2023-01-reserve/
https://code4rena.com/audits/2023-08-arbitrum-security-council-election-system
https://code4rena.com/audits/2023-08-arbitrum-security-council-election-system
https://code4rena.com/audits/2023-09-maia-dao-ulysses#top
https://code4rena.com/audits/2023-09-maia-dao-ulysses#top
https://code4rena.com/audits/2023-08-chainlink-staking-v02
https://code4rena.com/audits/2023-08-chainlink-staking-v02
https://github.com/sherlock-protocol/sherlock-reports/blob/main/audits/2023.0512%20-%20Final%20-%20DODO%20Margin%20Trading%20Audit%20Report.pdf
https://github.com/sherlock-protocol/sherlock-reports/blob/main/audits/2023.0512%20-%20Final%20-%20DODO%20Margin%20Trading%20Audit%20Report.pdf
https://code4rena.com/audits/2023-07-lens-protocol-v2#top
https://code4rena.com/audits/2023-07-lens-protocol-v2#top
https://code4rena.com/reports/2023-04-party
https://code4rena.com/reports/2023-04-party
https://code4rena.com/audits/2023-06-lukso#top
https://code4rena.com/audits/2023-06-lukso#top
https://audits.sherlock.xyz/contests/79/report
https://audits.sherlock.xyz/contests/79/report
https://code4rena.com/reports/2023-03-mute
https://github.com/sherlock-protocol/sherlock-reports/blob/main/audits/2023.19.04%20-%20Final%20-%20Taurus%20Audit%20Report.pdf
https://github.com/sherlock-protocol/sherlock-reports/blob/main/audits/2023.19.04%20-%20Final%20-%20Taurus%20Audit%20Report.pdf
https://renascence-labs.xyz/audits
https://renascence-labs.xyz/audits

2

Likelihood: Low Medium Low Low

1.3.1 Impact

• High - Funds are directly at risk, or a severe disruption of the protocol’s core functionality

• Medium - Funds are indirectly at risk, or some disruption of the protocol’s functionality

• Low - Funds are not at risk

1.3.2 Likelihood

• High - almost certain to happen, easy to perform, or not easy but highly incentivized

• Medium - only conditionally possible or incentivized, but still relatively likely

• Low - requires stars to align, or little-to-no incentive

3

2 Executive Summary

2.1 About Eternal Restaking

Eternal-Restaking is still under active development. Current features in the protocol are:

• ERC4626 Vaults in which users can stake that also support Permit deposits.

• Vault Supervisor contract that serves as the staking entry point and also orchestrates the Vaults deposit,

withdraw, mint and redeem operations. The Vault Supervisor is also responsible for creating and adding

new Vaults to the system.

• Delegate Supervisor contract that handles withdrawals by first queuing the withdraw requests and then

executing them if the user has exceeded the staking lock period for each Vault he has requested to exit.

2.2 Overview

Project Eternal Restaking

Repository Eternal-restaking

Commit Hash 46b15e107cb6…

Mitigation Hash 0f6461f2d63d…

Date 25 March 2024 - 27 March 2024

2.3 Issues Found

Severity Count

High Risk 0

Medium Risk 0

Low Risk 4

Informational 7

Total Issues 11

3 Findings Summary

ID Description Status

https://github.com/Risk-Harbor/karak-restaking
https://github.com/Risk-Harbor/karak-restaking/blob/46b15e107cb61396a5b1b607932df91d35fecffa
https://github.com/Risk-Harbor/karak-restaking/blob/0f6461f2d63d984c4ae7acfa429f6af98bab33de

4

L-1 Deposits through VaultSupervisor.depositWithSignature() can

 be griefed

Resolved

L-2 Effective delay in withdrawal request is maximum of vault delays Acknowledged

L-3 Vault should override _underlyingDecimals() from Solady Resolved

L-4 MAX_WITHDRAWAL_DELAY constant depends on block time of different

chains

Resolved

I-1 DelegationSupervisor.startWithdraw() can create a WithdrawRequest

with empty vaults and shares arrays

Resolved

I-2 Functions setDelegationSupervisor() and modifyVaultAllowlist() inside

VaultSupervisor might brick pending withdrawals

Resolved

I-3 Vault withdrawal delay cannot be changed and is not checked upon

initialization

Resolved

I-4 Improvements in tests Resolved

I-5 Upgradeable contracts Vault, VaultSupervisor and DelegationSupervisor

are missing a call to _disableInitializers()

Resolved

I-6 Interface declaration IDelegationSupervisor.initialize() has wrong

parameter names

Resolved

I-7 Withdrawal incentives are broken once rewards are distributed as Vault

yield

Acknowledged

4 Findings

Low Risk

[L-1] Deposits through VaultSupervisor.depositWithSignature() can be griefed

Context:

• VaultSupervisor

Description: The VaultSupervisor.depositWithSignature() function has two front-running issues.

https://github.com/Risk-Harbor/karak-restaking/blob/46b15e107cb61396a5b1b607932df91d35fecffa/packages/contracts/src/VaultSupervisor.sol

5

1. An attacker can front-run the function call and specify a amount parameter that is lower than value. It

can be any value in the range [x,value], such that x translates to a non-zero shares amount in the Vault.

This is effectively a DoS since the user doesn't deposit the intended amount.

2. An attacker can extract the permit signature from the transaction and execute the permit directly on the

ERC20 token. The transaction to depositWithSignature() will revert.

Recommendation: Two observations lead to the recommendation.

1. A failed call to ERC20Permit.permit() must not cause a revert to depositWithSignature(). Therefore, the

call to ERC20Permit.permit() must be wrapped in a try-catch block.

2. Without requiring a successful call to ERC20Permit.permit(), the depositWithSignature() function lacks an

authorization check. Any allowance that a user has given to the Vault could be used to deposit his funds.

This leads to the necessity of using a second signature to specify the user's intent to deposit.

In summary, the logic can be described by the following pseudocode:

Eternal: Fixed in PR22 and PR34.

Renascence: The recommendation has been implemented.

[L-2] Effective delay in withdrawal request is maximum of vault delays

Context:

• Withdraw.sol

VaultSupervisor.sol

function depositWithSignature (
IVault vault,
uint256 amount,
address user,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s

) external nonReentrant whenNotPaused returns (uint256 shares) {
IERC20Permit (address (vault. asset ())). permit (user, address (vault), value,
deadline, v, r, s);
return depositInternal (user, vault, amount);

}

function depositWithSignature (
depositSignature
permitSignature

) {
try ERC20Permit. permit (permitSignature) catch {}
checkSignature (depositSignature)
depositInternal (depositSignature.user, depositSignature.vault,
depositSignature.amount)

}

https://github.com/Risk-Harbor/karak-restaking/pull/22
https://github.com/Risk-Harbor/karak-restaking/pull/34
https://github.com/Risk-Harbor/karak-restaking/pull/34
https://github.com/Risk-Harbor/karak-restaking/blob/46b15e107cb61396a5b1b607932df91d35fecffa/packages/contracts/src/entities/Withdraw.sol

6

Description: Currently, Withdraw.finishStartedWithdrawal() loops over the Vaults that are recorded in the

QueuedWithdrawal request, and for each Vault checks if the per Vault delay vaultWithdrawalDelay has passed.

The problem is that this mechanism sets the effective withdrawal delay for the whole QueuedWithdrawal

request to the maximum Vault delay among the Vaults in the request. This could impact the user experience

since a user would need to wait for the maximum delay to pass before he can withdraw even from a Vault with

a much shorter delay.

Recommendation: If this behavior is determined to be correct, the finding can be acknowledged. The user can

queue multiple WithdrawRequests through DelegationSupervisor.startWithdraw() and avoid the issue,

however, the user will be required to spend excess gas. If the behavior is not expected, a partial withdrawal

mechanism should be implemented, such that for each Vault the partial withdrawal can be processed as soon

as the delay for the Vault has passed.

Eternal: Acknowledged.

Renascence: The finding has been acknowledged.

[L-3] Vault should override _underlyingDecimals() from Solady

Context:

• Vault.sol

Description: The Vault contract should override Solady's ERC4626._underlyingDecimals() in case the decimals

of the underlying assets are not the default 18.

Recommendation: The Solady library suggests using ERC4626._tryGetAssetDecimals() during initialization to set

the decimals of the underlying asset.

Withdraw.sol

function finishStartedWithdrawal (QueuedWithdrawal calldata withdrawal,
DelegationSupervisorLib.Storage storage delegationSupervisor) external {

 ...

 for (uint256 i = 0 ; i < withdrawal.request.vaults.length;) {

 if withdrawal.start (+
delegationSupervisor.state.vaultWithdrawalDelay[withdrawal.request.vaults[i]] >
block.timestamp) {

 revert MinWithdrawDelayNotPassed () ;

 }

 ...

 }
}

https://github.com/Risk-Harbor/karak-restaking/blob/46b15e107cb61396a5b1b607932df91d35fecffa/packages/contracts/src/Vault.sol

7

Eternal: Fixed in PR24.

Renascence: The recommendation has been implemented.

[L-4] MAX_WITHDRAWAL_DELAY constant depends on block time of different chains

Context:

• Constants.sol

Description: The MAX_WITHDRAWAL_DELAY constant is set to 216000 * 12, where 12 represents the number

of seconds per block on Ethereum. However, as discussed with the client, the protocol will be deployed on

Ethereum and Eternal, and 12 seconds is an incorrect block time on Eternal.

Recommendation: It is recommended to make MAX_WITHDRAWAL_DELAY independent from the block time

of the chain that the protocol is deployed on. The constant should be set to the intended number of seconds

which will be correct on all chains.

Eternal: Fixed in PR26.

Renascence: MAX_WITHDRAWAL_DELAY is set to 30 days, this is equivalent to 216000 * 12, which it has been

set to before. The value of 30 days indicates that it is intended to be the same value across chains.

@@ -19,6 +19,8 @@ contract Vault is ERC4626, Initializable, Ownable,
PausableUpgradeable, Reentran

string private symbolStr;
uint256[45] private __gap;

+ uint8 decimals;

/* ========== MUTATIVE FUNCTIONS ========== */

function initialize(IVaultSupervisor _supervisor, IERC20 _depositToken, string
memory _name, string memory _symbol)

@@ -31,6 +33,13 @@ contract Vault is ERC4626, Initializable, Ownable,
PausableUpgradeable, Reentran

depositToken = _depositToken;
nameStr = _name;
symbolStr = _symbol;

+
+ (bool success, uint8 result) = _tryGetAssetDecimals(address(_depositToken));
+ decimals = success ? result : _DEFAULT_UNDERLYING_DECIMALS;
+ }
+
+ function _underlyingDecimals() internal view override returns (uint8) {
+ return decimals;

}

https://github.com/Risk-Harbor/karak-restaking/pull/24
https://github.com/Risk-Harbor/karak-restaking/pull/24
https://github.com/Risk-Harbor/karak-restaking/blob/46b15e107cb61396a5b1b607932df91d35fecffa/packages/contracts/src/interfaces/Constants.sol
https://github.com/Risk-Harbor/karak-restaking/pull/26
https://github.com/Risk-Harbor/karak-restaking/pull/26

8

Informational [I-1] DelegationSupervisor.startWithdraw() can create a WithdrawRequest with empty

vaults and shares arrays

Context:

• DelegationSupervisor

Description: Currently, the functions DelegationSupervisor.startWithdraw() and

DelegationSupervisor.removeSharesAndStartWithdrawal() are missing validation checks to ensure that the

processed WithdrawRequest doesn't contain empty vaults and shares arrays.

DelegationSupervisor

function startWithdraw (Withdraw.WithdrawRequest [] calldata withdrawalRequests)

 ...

 for (uint256 i = 0 ; i < withdrawalRequests.length;) {

 // @audit no check that vaults and shares are non-empty

 if withdrawalRequests[i].vaults.length (!=
withdrawalRequests[i].shares.length) {

 revert InvalidInput () ;

 }

 if withdrawalRequests[i].withdrawer (!= msg.sender) {

 revert NotStaker () ;

 }

 // Remove shares from staker's strategies and place strategies/shares in
queue.

 (withdrawalRoots[i], withdrawConfigs[i]) = removeSharesAndStartWithdrawal ({

 ...

 }
}

https://github.com/Risk-Harbor/karak-restaking/blob/46b15e107cb61396a5b1b607932df91d35fecffa/packages/contracts/src/DelegationSupervisor.sol

9

Recommendation: This finding can currently be acknowledged since it doesn't lead to any particular impact.

However, we advise that 0 length checks for vaults and shares are implemented in order to improve the

robustness of the code against malformed input.

Eternal: Fixed in PR27.

Renascence: The checks that vaults and shares are non-empty, is performed before a withdrawal request is

created in Withdraw.validate().

[I-2] Functions setDelegationSupervisor() and modifyVaultAllowlist() inside VaultSupervisor might brick

pending withdrawals

Context:

• VaultSupervisor

Description: Currently, there is no migration process for replacing Delegation Supervisors. This means using

VaultSupervisor.setDelegationSupervisor() will brick all pending withdrawals that were started with the old

supervisor, since the function VaultSupervisor.redeemShares() has the onlyDelegationSupervisor modifier,

which will allow calls only from the new Delegation Supervisor. Similarly, if a user has a queued withdrawal that

contains a Vault that has been disallowed through VaultSupervisor.modifyVaultAllowlist(), he will loose on all of

his pending withdrawals that are from the allowed Vaults (and are within the pending withdraw request).

Recommendation: This finding can be acknowledged since the owner is fully trusted and is expected to

carefully perform privileged actions.

Nevertheless, a mapping could be introduced that keeps track of previous Delegation Supervisors and the

mapping would be used by a modifier to allow older Delegation Supervisors to call

VaultSupervisor.redeemShares().

DelegationSupervisor

function removeSharesAndStartWithdrawal (
...
IVault[] memory vaults,
uint256 [] memory shares

) internal returns (bytes32 withdrawalRoot, Withdraw.QueuedWithdrawal memory
withdrawal) {

// @audit vaults and shares can be empty
if vaults.length (!= shares.length) revert InvalidInput ; ()
//|| operator == address(0)
if staker (== address (0)) revert ZeroAddress () ;
if staker (!= withdrawer) revert NotStaker () ;

for (uint256 i = 0 ; i < vaults.length;) {
//_decreaseOperatorShares(operator, vaults[i], shares[i]);
self.config.vaultSupervisor. removeShares staker, (vaults[i], shares[i]);
unchecked {

i++;
}

}
...

}

https://github.com/Risk-Harbor/karak-restaking/pull/27
https://github.com/Risk-Harbor/karak-restaking/pull/27
https://github.com/Risk-Harbor/karak-restaking/blob/46b15e107cb61396a5b1b607932df91d35fecffa/packages/contracts/src/VaultSupervisor.sol

10

As the project will be extended with new features, the development roadmap should be taken into

consideration when deciding how to address this finding. The recommended solution with the mapping may

conflict with other features.

Eternal: Fixed in PR31.

Renascence: The recommendation has been implemented.

[I-3] Vault withdrawal delay cannot be changed and is not checked upon initialization

Context:

• DelegationSupervisorLib

Description: There are two delays that are enforced in the Withdraw.finishStartedWithdrawal() function.

• The delegationSupervisor.config.minWithdrawalDelay, which is required for all withdrawals

• The delegationSupervisor.state.vaultWithdrawalDelay[vaultId] which is a withdrawal delay set per Vault

There are two minor issues with how vault delays are currently set up.

• Both delays cannot be changed once initialized unless the contracts are upgraded.

• The per Vault delay is checked not to exceed Constants.MAX_WITHDRAWAL_DELAY in

DelegationSupervisorLib.setMinWithdrawOfVaults(), however, the general minWithdrawalDelay is not

checked if it exceeds Constants.MAX_WITHDRAWAL_DELAY and can be set to any value in

DelegationSupervisorLib.initOrUpdate().

Recommendation: This finding can be acknowledged since it's a design decision and the owner is trusted to set

up a correct minWithdrawalDelay. However, for the sake of maintaining a good code standard,

delegationSupervisor.config.minWithdrawalDelay could be checked against a constant similar to how the per

Vault delay is checked not to exceed MAX_WITHDRAWAL_DELAY.

Eternal: Fixed in PR31.

Renascence: minWithdrawalDelay is now checked in DelegationSupervisorLib.initOrUpdate(). Also, all

withdrawal delays can now be updated by the owner.

[I-4] Improvements in tests

Context:

• DelegationSupervisor.t.sol

• Vault.t.sol

• VaultSupervisor.t.sol

Description: The Vault, 'VaultSupervisor', and DelegationSupervisor contracts are supposed to be upgradeable

and deployed behind Proxy contracts. The current test suite and script folder of the project does not include

tests and scripts that mimic how the contracts will be deployed in practice.

Recommendation: Extend the test suite to include Proxy tests and add a deployment script.

Eternal: Fixed in PR32.

Renascence: The recommendation has been implemented.

https://github.com/Risk-Harbor/karak-restaking/pull/31
https://github.com/Risk-Harbor/karak-restaking/pull/31
https://github.com/Risk-Harbor/karak-restaking/blob/46b15e107cb61396a5b1b607932df91d35fecffa/packages/contracts/src/entities/DelegationSupervisorLib.sol
https://github.com/Risk-Harbor/karak-restaking/pull/31
https://github.com/Risk-Harbor/karak-restaking/pull/31
https://github.com/Risk-Harbor/karak-restaking/blob/46b15e107cb61396a5b1b607932df91d35fecffa/packages/contracts/test/DelegationSupervisor.t.sol
https://github.com/Risk-Harbor/karak-restaking/blob/46b15e107cb61396a5b1b607932df91d35fecffa/packages/contracts/test/Vault.t.sol
https://github.com/Risk-Harbor/karak-restaking/blob/46b15e107cb61396a5b1b607932df91d35fecffa/packages/contracts/test/VaultSupervisor.t.sol
https://github.com/Risk-Harbor/karak-restaking/pull/32
https://github.com/Risk-Harbor/karak-restaking/pull/32

11

[I-5] Upgradeable contracts Vault, VaultSupervisor and DelegationSupervisor are missing a call to

_disableInitializers()

Context:

• DelegationSupervisor

• Vault

• VaultSupervisor

Description: The best practice in contracts that inherit from Initializable is to disable the initializers since if left

uninitialized they can be invoked in the implementation contract by an attacker. For example, there is a past

vulnerability disclosure that demonstrates how initializers getting called in the implementation can lead to

contract takeover where the attacker can appoint an owner and would self-destruct the implementation,

therefore, bricking the Proxy: OZ post-mortem. Although this issue has been fixed from OZ version 4.3.2 it's still

best practice to call Initializable._disableInitializers() in a constructor in the implementation.

Recommendation: Add a constructor with a call to _disableInitializers() in the Vault, VaultSupervisor, and

DelegationSupervisor contracts.

Eternal: Fixed in PR29.

Renascence: The recommendation has been implemented.

[I-6] Interface declaration IDelegationSupervisor.initialize() has wrong parameter names

Context:

• IDelegationSupervisor.sol

Description: The declaration of IDelegationSupervisor.initialize() has parameters called

_minWithdrawDelayBlocks and _withdrawalDelayBlocks that suggests delays are recorded in blocks, however,

the delays are supposed to be in seconds.

Recommendation: Change the variables to minWithdrawDelay and withdrawalDelays, similar to how it is in the

implementation DelegationSupervisor.initialize().

Initializable.sol

CAUTION *

[
]

* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a
proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from
being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it
when it is deployed:
*

+ constructor() {
+ _disableInitializers();
+ }

https://github.com/Risk-Harbor/karak-restaking/blob/46b15e107cb61396a5b1b607932df91d35fecffa/packages/contracts/src/DelegationSupervisor.sol
https://github.com/Risk-Harbor/karak-restaking/blob/46b15e107cb61396a5b1b607932df91d35fecffa/packages/contracts/src/Vault.sol
https://github.com/Risk-Harbor/karak-restaking/blob/46b15e107cb61396a5b1b607932df91d35fecffa/packages/contracts/src/VaultSupervisor.sol
https://forum.openzeppelin.com/t/uupsupgradeable-vulnerability-post-mortem/15680
https://forum.openzeppelin.com/t/uupsupgradeable-vulnerability-post-mortem/15680
https://github.com/Risk-Harbor/karak-restaking/pull/29
https://github.com/Risk-Harbor/karak-restaking/pull/29
https://github.com/Risk-Harbor/karak-restaking/blob/46b15e107cb61396a5b1b607932df91d35fecffa/packages/contracts/src/interfaces/IDelegationSupervisor.sol

12

Eternal: Fixed in PR15.

Renascence: The recommendation has been implemented.

[I-7] Withdrawal incentives are broken once rewards are distributed as Vault yield

Context:

• DelegationSupervisor.sol

Description: The protocol enforces a withdrawal delay period for each Vault. Withdrawals from the Vault need

to be queued and can only be finished when the withdrawal delay has passed.

It has been discovered that shares are only redeemed upon finishing the withdrawal. Hence, shares continue to

earn yield during the withdrawal delay period.

Users can bypass the withdrawal delay period by preemptively queuing withdrawals, such that they can

withdraw instantly when they want to.

This effectively caps the duration for which the withdrawal delay is applicable to one such withdrawal delay

starting at the deposit time, since if the preemptive withdrawal is started immediately at the deposited time,

withdrawals are instant after one withdrawal delay period has passed.

Currently, there does not exist an issue since rewards are distributed as ”points” which are calculated off-chain

and they won't be rewarded for any shares that are queued for withdrawal.

Recommendation: The finding should be tracked internally and a mitigation must be implemented as soon as

the protocol switches from ”points” to Vault yield.

Eternal: Acknowledged. In the future, the startWithdraw TX would ”sell” the shares.

Renascence: Acknowledged, as recommended.

5 Centralization Risks

5.1 Owner is fully trusted

All contracts will be deployed behind proxies which means they can be changed to execute arbitrary logic. In

addition, the contracts contain prviliged functions that the owner can call. In summary, the owner and proxy

admin must be fully trusted.

6 Systemic Risks

6.1 External tokens risk

Users participate in the protocol by depositing underlying tokens in the Vaults. The security of the Vaults relies

on the security of the underlying tokens. If the underlying tokens lose their value or get hacked, this is an

immediate loss of funds for the users.

https://github.com/Risk-Harbor/karak-restaking/pull/15
https://github.com/Risk-Harbor/karak-restaking/pull/15
https://github.com/Risk-Harbor/karak-restaking/blob/46b15e107cb61396a5b1b607932df91d35fecffa/packages/contracts/src/DelegationSupervisor

